Spin-statistics theorem and geometric quantisation

نویسنده

  • Charis Anastopoulos
چکیده

We study the relation of the spin-statistics theorem to the geometric structures on phase space, which are introduced in quantisation procedures (namely a U(1) bundle and connection). The relation can be proved in both the relativistic and the non-relativistic domain (in fact for any symmetry group including internal symmetries) by requiring that the exchange can be implemented smoothly by a class of symmetry transformations that project in the phase space of the joint system system. We discuss the interpretation of this requirement, stressing the fact that any distinction of identical particles comes solely from the choice of coordinates the exchange then arises from suitable change of coordinate system. We then examine our construction in the geometric and the coherent-state-path-integral quantisation schemes. In the appendix we apply our results to exotic systems exhibiting continuous “spin” and “fractional statistics”. This gives novel and unusual forms of the spin-statistics relation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gauge Symmetries, Topology and Quantisation

The following two loosely connected sets of topics are reviewed in these lecture notes: 1) Gauge invariance, its treatment in field theories and its implications for internal symmetries and edge states such as those in the quantum Hall effect. 2) Quantisation on multiply connected spaces and a topological proof the spin-statistics theorem which avoids quantum field theory and relativity. Under ...

متن کامل

Charged Sectors, Spin and Statistics in Quantum Field Theory on Curved Spacetimes

The first part of this paper extends the Doplicher-Haag-Roberts theory of superselection sectors to quantum field theory on arbitrary globally hyperbolic spacetimes. The statistics of a superselection sector may be defined as in flat spacetime and each charge has a conjugate charge when the spacetime possesses non-compact Cauchy surfaces. In this case, the field net and the gauge group can be c...

متن کامل

Parabolic maps with spin: Generic spectral statistics with non-mixing classical limit

We investigate quantised maps of the torus whose classical analogues are ergodic but not mixing. Their quantum spectral statistics shows non-generic behaviour, i. e. it does not follow random matrix theory (RMT). By coupling the map to a spin 1/2, which corresponds to changing the quantisation without altering the classical limit of the dynamics on the torus, we numerically observe a transition...

متن کامل

Institute for Mathematical Physics Charged Sectors, Spin and Statistics in Quantum Field Theory on Curved Spacetimes Charged Sectors, Spin and Statistics in Quantum Field Theory on Curved Spacetimes

The rst part of this paper extends the Doplicher-Haag-Roberts theory of superselection sectors to quantum eld theory on arbitrary globally hyperbolic spacetimes. The statistics of a superselection sector may be deened as in at spacetime and each charge has a conjugate charge when the spacetime possesses non-compact Cauchy surfaces. In this case, the eld net and the gauge group can be constructe...

متن کامل

The spin contribution to the form factor of quantum graphs

Following the quantisation of a graph with the Dirac operator (spin-1/2) we explain how additional weights in the spectral form factor K(τ) due to spin propagation around orbits produce higher order terms in the small-τ asymptotics in agreement with symplectic random matrix ensembles. We determine conditions on the group of spin rotations sufficient to generate CSE statistics. E-mail address: j...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008